
Supplementary documents 
Supplementary Figures 

 

 

Supplementary Figure 1. Scatter plot showing the pair-wise instrument validation across the pQTL 
GWAS used in the MR study. A) SNP effects from Folkersen vs SNP effects from Sun et al, Suhre et al 
and Yao et al; B) SNP effects from Suhre vs SNP effects from Sun et al, Folkersen et al and Yao et al; C) 
SNP effects from Sun vs SNP effects from Folkersen et al, Suhre et al and Yao et al. Notation: X-axis 
refers to the SNP effects from the lookup study; Y-axis refers to the SNP effects from the other studies; 
dotted line is the identity line. Each dot refers to one SNP in the comparison, dots in green refer to the 
SNP effects which have a pair-wise Z score > 5, whereas the dots in red refer to SNP effects which have 
a pair-wise Z score < 5. 



 

Supplementary Figure 2. Bland-Altman plots showing pair-wise instrument validation across the pQTL 
GWASs used in the MR study. A) SNP effects from Folkersen vs SNP effects from the other three 
studies; B) SNP effects from Suhre vs SNP effects from the other three studies; C) SNP effects from 
Sun vs SNP effects from the other three studies. Notation: X-axis refers to the mean across effects; Y-
axis refers to the difference between effects. The three dotted lines refer to the central estimate and 
the 95% confidence interval lines of the Bland-Altman test. Each dot refers to one SNP in the 
comparison, dots in red, green and blue refer to the SNP effects from each of the different studies. 



 

 

Supplementary Figure 3. MR and colocalization models. Model 1 – Causality: A genetic variant affects 
disease risk by changing protein levels; Model 2: Reverse causality Genetic variants affect disease risk 
through pathways other than via the protein of interest. The disease has a downstream effect on 
protein levels; Model 3 – Horizontal pleiotropy: a genetic variant influences both protein levels and 
disease risk by two independent biological pathways; Model 4 – confounding by LD: a genetic variant 
(variant 1) that influences protein levels is correlated with a second variant (variant 2) that influences 
disease risk. Colocalization analysis can distinguish Model 4 from Model 1 or Model 3. 



 

Supplementary Figure 4. Heatmap of the colocalization evidence for IL23R association on Crohn’s disease (CD) in the IL23R region. The 15 cells refer to the 
15 pair-wise combinations of pair-wise conditional and colocalization analysis. The three columns refer to the SNP effects of IL23R protein level used in the 
colocalization analysis (marginal SNP effect, joint SNP effect after conditioning on the 2nd IL23R signal (rs3762318) and the joint SNP effect after conditioning 
on the 1st IL23R signal (rs11581607)). The five rows refer to the SNP effects of Crohn’s disease used in the colocalization analysis (marginal SNP effect, joint 
SNP effects after conditioning on the 1st, 2nd, 3rd and 4th CD signals). The darker red colour refers to stronger colocalization evidence.  

 

 



 

Supplementary Figure 5. Regional association plot showing multiple association peaks for Haptoglobin (HP) and LDL cholesterol in the cis region. The second 
independent hit for LDL cholesterol colocalised with the top hit for HP (rs217181) after conditioning on the top hit for LDL cholesterol (rs2000999) 
(colocalization probability = 99.9%). (A) HP after conditioning on the second pQTL HP rs34042070; (B) LDL-C after conditioning on the second pQTL HP 
rs34042070; (C) HP after conditioning on the top pQTL HP rs217181; (D) LDL-C after conditioning on the top pQTL HP rs217181.The HP data are from Sun et 
al. and the LDL cholesterol data are from GLGC consortium.  



 

 

Supplementary Figure 6. Histogram representing the distribution of the number of proteins 
associated with each pQTL. (A) a zoomed in histogram which only showed pQTLs associated with fewer 
than 15 proteins. (B) a histogram of number of proteins each pQTL associated with, the grey bar refers 
to trans pQTL; the orange bar refers to cis pQTL. There is a clear trend that the trans pQTLs were 
associated with more proteins (potentially pleiotropic) compared to the cis pQTLs.   
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Supplementary Figure 7. Regional association plot of Protein C (PROC) protein levels in two regions. 
(A) there is little evidence that SNPs are associated with PROC protein levels in the cis region. (B) there 
is strong evidence that SNPs are associated with PROC in the trans PROCR region. The PROC data is 
from Suhre et al.   
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Supplementary Figure 8. Forest plot of MR estimates for plasma PLAU levels on immune-mediated 
phenotypes, cardiovascular phenotypes and cancers. The X-axis refers the log odds ratio of disease (or 
SD change in risk factor) per unit change in plasma PLAU level. The Y-axis refers to phenotypes tested 
in this Phenome-wide MR. The error bar refers to the 95% confidence interval of the causal estimates. 
Colours refer to different categories of phenotypes. 

 



 

 

Supplementary Figure 9. Forest plot showing MMP12 MR associations on coronary heart disease and stroke.  The X-axis refers the log odds ratio of disease 
per unit higher MMP12 level. The Y-axis refers to different subtypes of cardiovascular diseases. The error bar refers to the 95% confidence interval of the 
causal estimates. 



 

Supplementary Figure 10. Difference between Mendelian randomization, polygenic risk score / TWAS 
and genetic correlation. Note: Genetic correlation estimates the overall genetic overlap of SNPs across 
the whole genome, which is closer to observational correlation between two phenotypes with no 
direction. Mendelian randomization estimates the causal relationship between two phenotypes with 
inference of direction, typically using SNPs robustly associated with the exposure (e.g. protein level) 
as instruments, where the instruments can be in either cis and/or trans regions. The SNP effect on 
human phenotype will be estimated first and then meta-analysed using various models such as inverse 
variance weighted (IVW) meta-analysis. The polygenic risk score association and TWAS are similar, and 
both use individual level genotype data. The method contains two steps, 1) using SNPs within the cis 
region to predict the expression of a gene; 2) correlate the predicted expression of the gene with the 
human phenotype.  

 



Supplementary Notes 
Protein-trait associations in three disease areas 
 

We found that our MR findings were clustered in three areas that have not been described well in the 
MR literature: blood pressure (AGT, ADM, ERAP2, FN1, SWAP70, CXCL16 and IGFBP3), lung function 
(ADAM19, APOF, GPC5, SERPINF1, MFAP2) and immune mediated disease (IL23R, IL6R, IL18R1, FCRL3, 
ICAM5 and PLAU).  

 

For blood pressure, Adrenomedullin (ADM) is a hormone involved in vascular tone, and is a well-
studied target for blood pressure 1 2 Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) has been linked 
to pre-eclampsia 3, for which there are currently no effective drugs. Rare mutations in Fibronectin 1 
(FN1) have been associated with glomerulopathy with fibronectin deposits 4, which leads to 
hypertension 5. C-X-C Motif Chemokine Ligand 16 (CXCL16) is an interferon-γ-regulated chemokine 
and scavenger receptor for oxidized low-density lipoprotein that is expressed in atherosclerotic lesions 
6 and has been linked to Chronic Kidney Disease 7. These connections may suggest the association of 
CXCL16 on DBP is at least in part, through the atherosclerosis or renal function. Insulin-like growth 
factor binding protein 3 (IGFBP3) levels have been previously reported to associate with hypertension 
8, and a SNP in IGFBP3 has been found to associate with increased long-term average pulse blood 
pressures 9.  

 

For lung function, A Disintegrin And Metalloproteinase Domain 19 (ADAM19) is a metalloproteinase, 
which may have a role in tissue remodelling 10. Apolipoprotein F (APOF) is a lipoprotein, which may 
associate with chronic obstructive pulmonary disease (COPD) 11. Glypican Proteoglycan 5 (GPC5) is a 
cell surface heparin sulfate proteoglycan) that has been linked to lung cancer 12. Serpin Family F 
Member 1 (SERPINF1) inhibits angiogenesis 13 and rare mutations are associated with osteogenesis 
imperfecta 14, but a link to lung function is unclear. Microfibril Associated Protein 2 (MFAP2) is an 
antigen of elastin associated fibrils so may be important in tissue remodelling in the lung. However, 
the MFAP2 locus was associated with both height and lung function 15. It is possible that the 
association we identified could be mediated by height.   

 

For the immune mediated traits, an existing IL23R antagonist, ustekinumab, demonstrated efficacy in 
reducing Crohn’s diseases in a recent phase III clinical trial (www.clinicaltrials.gov) 16. Our MR analysis 
further linked IL23R inhibition with psoriasis. IL18R1 is a known eczema locus which replicated in both 
the Japanese and European population 17 18. Our MR study suggested that IL18R1 could be an effector 
/ causal gene for eczema. Polymorphisms within Fc Receptor Like 3 (FCRL3) have been found to 
associate with rheumatoid arthritis in the Chinese population 19. A link between Intercellular Adhesion 
Molecule 5 (ICAM5) and Crohn's disease is not yet clear in the literature.  

  



MR results replicated previous findings  

Some of our MR results replicated those previously described by others. For example, Sun et al 
suggested that the TNFRSF11A associated variant rs884205 was also associated with Paget’s disease 
20. Our Wald ratio analysis confirmed the positive association between this pQTL and Paget’s disease 
(OR=8.56, 95%CI=4.78 to 15.31, P= 4.72x10-13). The colocalization analysis further confirmed that the 
two traits share the same casual variant within the TNFRSF11A region (PP=99%).  

In addition, we replicated the apparent effect of MMP12 pQTL on CHD (OR=0.94, 95%CI=0.91 to 0.98, 
P= 0.0014) and stroke reported in Sun et al 20. We extended this analysis to stroke subtypes and found 
that MMP12 pQTL were associated with ischemic stroke (OR=0.90, 95%CI=0.84 to 0.96, P=0.0008) and 
large vessel disease (OR=0.81, 95%CI=0.71 to 0.92, P=0.00098) but not strongly with cardioembolic 
stroke (OR=0.89, 95%CI=0.79 to 1.01, P=0.07) and not with small vessel disease (OR=0.97, 95%CI=0.85 
to 1.12, P=0.70) (Supplementary Table 25, Supplementary Figure 9).   

  



Bi-directional MR and Steiger filtering results 
For the bi-directional MR, we modelled complex traits as our exposure (data from MR-Base) and 
plasma protein level as our outcome (full summary statistics of proteins were available for Sun et al 
and Folkersen et al 20,21). For clarity – this analysis does not necessarily implicate the disease status as 
being causal for the protein levels, but it indicates that genetic liability to the disease may influence 
protein levels. In total, the relationship between 104 diseases and 206 proteins were tested (841 tests, 
Bonferroni-adjusted P = 5.9x10-5). We found no strong evidence of reverse causality between protein 
level and disease for the majority of protein-trait associations (Supplementary Data 1). However, 
there were exceptions for traits with a strong genetic signal at the APOE locus.  

Due to a lack of full summary statistics for some pQTL studies, we were not able to conduct bi-
directional MR for all MR findings. Instead, we applied Steiger filtering as an alternative method to 
infer the causal direction for our MR. For MR findings using multiple instruments, the Steiger filtering 
tested the directionality of each instrument on exposure and outcome separately (rather than testing 
the overall directionality between exposure and outcome). Among all 397 protein-trait associations 
we tested, 360 had enough statistical power for the Steiger filtering analysis (to detect a nominally 
significant P value <0.05). For these 360 cases, 303 (84.2%) showed evidence that the direction of the 
association is from protein to human traits (Supplementary Table 7, 8, 11, 12 and 13). We found a 
substantially more reverse causal instances for trans (31.2%) than there are for cis (0.6%). 

  Trans Cis 

SF-FALSE 53 1 

SF-TRUE 117 178 

All 170 179 

Percentage 31.2% 0.6% 

Note: SF-FALSE refers to protein-phenotype association with evidence of reverse causality using 
Steiger filtering; SF-TRUE means the association with no evidence of reverse causality. 

 

 



Case study for drug repurposing  
As an example of drug repositioning, our phenome-wide MR analysis suggested that lifelong higher 
urokinase-type plasminogen activator (PLAU) levels are associated with lower inflammatory bowel 
disease (IBD) risk (OR=0.75, 95%CI= 0.69 to 0.83, P= 1.28x10-9; Supplementary Figure 8), potentially 
identifying a repositioning opportunity for IBD. However, we note this opportunity with caution given 
the multitude of considerations in such a strategy. For example, the drug Kinlytic (urokinase) was 
initially developed for use as a thrombolytic in the treatment of acute myocardial infarction and 
ischaemic stroke, and thus a target-mediated adverse effect is an increase in bleeding and potential 
haemorrhage. In addition, the current agent is administered intravenously which precludes it as an 
option as a long-term preventative treatment. While our data suggest that Kinlytic might be protective 
in the aetiology of IBD, a careful risk benefit assessment would be required as part of an investigation 
into whether drugs targeting urokinase might be repurposed for the treatment of IBD.  

 

 



 
Description of ALSPAC study 
Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 
1992 were invited to take part in the study. The initial number of pregnancies enrolled is 14,541 (for 
these at least one questionnaire has been returned or a “Children in Focus” clinic had been attended 
by 19/07/99). Of these initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 
live births and 13,988 children who were alive at 1 year of age.  
When the oldest children were approximately 7 years of age, an attempt was made to bolster the 
initial sample with eligible cases who had failed to join the study originally. As a result, when 
considering variables collected from the age of seven onwards (and potentially abstracted from 
obstetric notes) there are data available for more than the 14,541 pregnancies mentioned above.  
The number of new pregnancies not in the initial sample (known as Phase I enrolment) that are 
currently represented on the built files and reflecting enrolment status at the age of 24 is 904 (452, 
254 and 198 recruited during Phases II, III and IV respectively), resulting in an additional 811 children 
being enrolled. The phases of enrolment are described in more detail in the cohort profile paper (see 
footnote 4 below). Please note that phase 4 enrolment (age 18-24) is not currently included in the 
cohort profile.  
The total sample size for analyses using any data collected after the age of seven is therefore 15,247 
pregnancies, resulting in 15,458 foetuses. Of this total sample of 15,656 foetuses, 14,973 were live 
births and 14,899 were alive at 1 year of age.  
A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended clinics at 
the University of Bristol at various time intervals between 4 to 61 months of age. The CiF group were 
chosen at random from the last 6 months of ALSPAC births (1432 families attended at least one clinic). 
Excluded were those mothers who had moved out of the area or were lost to follow-up, and those 
partaking in another study of infant development in Avon. 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 
Research Ethics Committees. 

Please note that the study website contains details of all the data that is available through a fully 
searchable data dictionary and variable search tool: http://www.bristol.ac.uk/alspac/researchers/our-
data/  
 



The protocol of the instrument validation 
Because instruments were identified from five independent studies performed using different 
analytical platforms (Box 1), we developed a protocol for instrument validation. Figure 1 summarises 
the 2 key analyses used for instrument validation.  

Study Platform Sample size Number of proteins (with pQTLs) Number of instruments (pQTLs) 

Sun et al SOMAScan 3301 1478 1981 

Emilsson et al SOMAScan 3200 776 875 

Suhre et al SOMAScan 1000 284 539 

Folkersen et al Olink 3394 58 80 

Yao et al xMAP 6861 60 131 

Box 1. The study level information of the 5 pQTLs studies.  

 

1 Harmonisation of Protein IDs and instruments 
Since the 5 previous studies measured plasma protein levels using different probes from three 
different platforms (SOMAScan, Olink and Luminex xMAP), we mapped the platform ID for each 
protein analyte from each study to Uniprot IDs (and associated annotations) based on annotations 
provided by the platform vendors and manual review. We then grouped the analytes based on their 
Uniprot IDs. The end product included columns corresponding to the ‘platform ID’ of each the analyte 
from each study, the full protein name, gene symbol, Uniprot ID, Ensembl gene id and GRch38 gene 
location (Supplementary Table 26). Since a single probe from any platform can map to multiple 
proteins, each of the protein names, gene symbols, Uniprot IDs, Ensembl IDs and gene locations is 
given as a semicolon-delimited list of entries. In particular, we included all UniProt IDs for a given gene, 
which is essential for a robust mapping. Finally, using the platform IDs as a key, we collated the 
association information of the instruments from each study based on the Uniprot IDs (Supplementary 
Table 26).  

 

2 Instrument validation 
2.1. Combining and reassigning instruments to proteins 
Since we regrouped the protein IDs based on their functions, we further reassigned the instruments 
to fit the new protein naming system rather than the protein names reported in the pQTL studies. We 
standardized the format of the instrument files across studies and reassigned them based on their 
Uniprot ID.  

 
2.2. Instrument specificity 
Absence of horizontal pleiotropy is one of the core assumptions for MR, which assumes that the 
genetic variant should only be related to the outcome of interest through the instrumented exposure. 
We noted that some SNPs were associated with more than one protein, for example, APOE SNP rs7412 
is associated with a set of proteins such as ADAM11, APBB2 and APOB. We considered these 
instruments associated with more than 5 proteins as potentially pleiotropic SNPs and non-specific for 
any particular protein level and set up a flag (discrete numeric parameter) based on the number of 
proteins these SNPs (and their proxies with LD r2>0.5) associated with (“N_protein” column in 
Supplementary Table 1).  



 

2.3. Instrument consistency across studies 
2.3.1. Cross-referencing association results between studies 
We pooled pQTLs from 5 studies, which have employed different proteomics arrays. The two main 
assays were the SOMAscan aptamer-based multiplex protein array 22 and the OLINK ProSeek CVD array 
23. The SOMAscan platform is based on the technology called Slow Off-rate Modified Aptamer 
(SOMAmer), for which reagents consist of a short single-stranded DNA sequence that incorporates a 
series of modifications that give the SOMAmer “protein-like” appendages. The OLINK ProSeek method 
is based on the highly sensitive and specific proximity extension array, which involves the binding of 
distinct polyclonal oligonucleotide-labelled antibodies to the target protein followed by quantification 
by real-time quantitative PCR. We noted some examples where SNPs were reported to be associated 
with a protein in one study but did not reach the genome-wide p-value threshold for statistical 
significance in other studies including the same protein. In these instances, we investigated whether 
this reflected no statistical evidence of association (in which case, this inconsistency may indicate 
potentially artefactual associations) or simply fluctuation of association strength with directionally 
consistent signals in both studies (which would provide supporting evidence for an instrument). 
Results of the pair-wise comparisons and the number of SNPs included in each comparison can be 
found in Supplementary Table 2.  

We noted some examples where SNPs were reported to be associated with a protein in one study but 
not reached the genome-wide p value threshold in other studies which had measured the same 
protein. In these instances, we investigated whether this reflected a no statistical evidence of 
association (in which case, this inconsistency may indicate potentially artefactual associations) or 
simply fluctuation of association strength, but with directionally consistent and nominally significant 
(p<0.05) associations in both studies (which would provide supporting evidence for an instrument).  

Because of the low number of proteins measured in Folkersen et al and Yao et al, the number of cases 
where we could perform a validation across 4 or even 3 studies were limited. Instead, for the 1062 
pQTLs with SNP lookup results in at least 2 studies, we performed 9 pair-wise comparisons to assess 
the consistency of the SNP effects of instruments in each pair of studies. Firstly, we tested the overall 
agreement of effect estimates for the pairwise comparisons. We estimated the pair-wise correlation 
(r), 95% confidence intervals and p values using the “cor.test” function in R (https://www.r-
project.org/).  

To provide an overall visualisation of the agreements we generated scatter plots for all pair-wise 
combinations (Supplementary Figure 1). For each scatter plot, we compared the genetic associations 
(betas, 95% CIs) from one study with the same SNPs looked up in the other study. We also generated 
Bland-Altman plots to compare the genetic effects between different studies (Supplementary Figure 
2).  

In summary, we show that the agreement of pQTL regression coefficients is high across all five studies 
(correlation ranged from r = 0.58 to 0.94, Supplementary Table 2), and in general, the effects of the 
SNP associations for all nine study-level pair-wise comparisons follows the identity line well with few 
outliers (Supplementary Figure 1 and 2). We further performed two consistency tests on the 
instruments which were present across studies.  

 



2.3.2. Pair-wise instrument validation 
The first consistency test was a heterogeneity test using a pair-wise Z statistic to investigate whether 
there was statistical evidence of heterogeneity between effect sizes in different studies (for all pQTL 
studies included in our analysis where: 1) effect sizes were always in SD unit; 2) using similar sets of 
covariates). If the Z score was greater than 5 (equal to a P value of 0.001), we considered the 
instrument to have strong evidence of heterogeneity indicating inconsistency of effect sizes between 
studies.  

 

Furthermore, we defined three flags (binary parameter) based on 1) whether the direction of the 
effects agreed across studies (column “Agree_beta” in Supplementary Table 15); 2) whether P values 
of the SNP association were smaller than 0.05 across studies (column “Agree_P” in Supplementary 
Table 15); 3) whether there was statistical evidence of heterogeneity between the two effect sizes 
(pair-wise Z test, with Z score greater than 5 as threshold, which is equal to p value of 0.001) (column 
“Heterogeneity_across_studies” in Supplementary Table 1).  

 

2.3.3. Instrument validation using colocalization analysis across protein studies 
The second consistency test was a colocalization analysis, which estimates the posterior probability 
(PP) of the same protein measured in different studies sharing the same causal pQTL within a 1Mb 
window around the pQTL with the smallest P value. The default priors for colocalization analysis were 
used here (the prior probability a SNP is associated with the protein is 1x10-4; the prior probability a 
SNP is associated with the human phenotype is 1x10-4; and the prior probability a SNP is associated 
with both the protein and the phenotype is 1x10-5). We also applied the pair-wise conditional and 
colocalization analysis (PWCoCo) for regions with multiple pQTLs to avoid the assumptions of 
traditional colocalization approaches of just a single association signal per region (details in Online 
methods: Pair-wise conditional and colocalization analysis). A lack of evidence (i.e. PP< 80%) in the 
conventional colocalization and PWCoCo analysis would suggest that the pQTL reported in the two 
studies did not share the same causal signals within the region, therefore are not consistent between 
the studies.  The colocalization analysis was conducted using the “coloc” R package 24. For instruments 
with SNP association information in both Sun et al and Folkersen et al, we were able to conduct 
colocalization analysis. However, due to lack of sufficient SNP coverage, it was not possible to conduct 
colocalization analysis to compare the pQTLs from the Emilsson et al, Suhre et al and Yao et al studies. 
We therefore conducted a LD check for these pQTLs instead. For proteins measured in multiple 
studies, we estimated the LD between the sentinel variant for each pQTL from one study and the top 
30 associated SNPs of the other study in the same region. For pQTLs that showed only weak LD (r2 < 
0.8) with any of the top 30 associated SNPs in the other study, we considered the pQTLs to not share 
the same causal SNP in the region and therefore be inconsistent instruments.  

 

 



Distinguishing vertical and horizontal pleiotropic instruments using biological pathway 
data  
Non-specific instruments may exhibit vertical pleiotropy (pQTL associated with proteins on the same 
pathway) or horizontal pleiotropy (pQTL associated with proteins on different pathways). Vertical 
pleiotropy does not violate the “exclusion restriction criterion” of MR but horizontal pleiotropy does 
25 26. For any instrument associated with multiple proteins, if these proteins are mapped to the same 
biological pathway and/or a protein-protein interaction (PPI) exists between them, then, by definition, 
the instrument is more likely to act through vertical pleiotropy and it is more likely to be a valid 
instrument for MR. Consequently, as an approach to distinguish vertical from horizontal pleiotropy, 
we checked the number of pathways and PPIs each protein is involved in for all the instruments 
associated with 2 to 5 proteins. We used EpiGraphDB (http://www.epigraphdb.org) to extract the 
most specific (lowest level) pathway information related to each protein from Reactome 71 72 and high 
confidence PPIs from StringDB (confidence score >0.7) 73 74. First, we systematically evaluated the 
number of pathways each protein is involved in (either directly or as part of a complex), and how many 
PPIs they have. Note, that although the original databases are curated, we may expect some missing 
information. We further evaluated how many pathways and PPIs are shared between groups of 
proteins that are associated with the same SNP or SNPs in strong LD (r2>0.8). The number of shared 
components for each group of proteins is presented in Supplementary Table 1, and Supplementary 
Data 2 depicts a detailed comparison within each group using Venn diagrams. 

 



Directionality tests 

With sufficiently large sample sizes, a SNP associated with an outcome through a mediating exposure 
could reach the conventional threshold for statistical significance in both the outcome and exposure 
GWAS. Therefore, using such thresholds to define instruments could lead to situations where the 
instrumental SNP influences the hypothesised exposure via the hypothesised outcome (i.e. the 
hypothesised outcome actually has a causal effect on the hypothesised exposure and not vice versa). 

 

Reverse Mendelian randomization  

For associations between proteins and phenotypes identified in the MR analysis, we applied bi-
directional MR to evaluate evidence for causal effects in the reverse direction by modelling complex 
phenotypes as our exposure and plasma protein as our outcome. Instruments for complex phenotypes 
were selected based on a threshold of P < 5 x 10-8 from GWAS after LD clumping to identify 
independent variants. The IVW method was applied to estimate the causal effects of phenotypes on 
proteins where more than one instrument was available, otherwise the Wald ratio was used. MR-
Egger 31 was used as a sensitivity analysis to test for potential pleiotropic effects.  

 

Identifying the direction of effects for instruments using Steiger filtering  

Due to lack of sufficient SNP association information (e.g. allele information, effect size, standard 
error) for some pQTL studies, it was not possible to conduct bi-directional MR using all proteins as 
outcomes. Therefore, we conducted Steiger filtering as an alternative method to test the directionality 
of protein-phenotype associations. The Steiger method 32 has been implemented in the 
TwoSampleMR R package 33 to assess directionality of instrument-phenotype associations 34 35. For 
disease phenotypes, we estimated the variance explained on the liability scale. We then set up a flag 
(categorical variable) to record the direction of the effects of the SNPs using Steiger filtering.  

 

Steiger filtering acts slightly different for MR using cis or trans pQTLs. For cis pQTLs, measurement 
error may bias the results. For trans pQTLs, a confounder may bias the results. However, the bias from 
these issues is expected to be minimal.  



Linkage disequilibrium check 

Results that survived the multiple testing threshold in the MR analysis were evaluated using a stringent 
Bayesian model (colocalization analysis) to estimate the posterior probability (PP) of each genomic 
locus containing a single variant affecting both the protein and the phenotype 24. The default priors 
were used for the analysis. A PP > 80% in this analysis would suggest that the two association signals 
are likely to colocalize within the test region. Colocalization analysis is commonly conducted for cis 
QTLs 36 37 but under studied for trans QTLs. We therefore applied colocalization to both cis and trans 
pQTLs. For protein and phenotype GWAS lacking sufficient SNP coverage or missing key information 
(e.g. allele frequency or effect size) in the test region, we conducted a LD check for the sentinel variant 
for each pQTL against the 30 strongest SNPs in the region associated with the phenotype as an 
approximate colocalization analysis. r2 of 0.8 between the sentinel pQTL variant and any of the 30 
strongest SNPs associated with the phenotype was used as evidence for approximate colocalization. 
For all MR top findings, we treated colocalised findings (PP>=80%) as “Colocalised” and LD checked 
findings (r2>=0.8) as “LD checked”; other findings that did not pass the colocalization or LD check 
analysis were annotated as “Not colocalized”. For MR findings using multiple instruments (e.g. cis + 
trans analysis), we tested each pQTL with the phenotype separately. Only if all pQTLs colocalised with 
the phenotype at r2>=0.8 did we treat this finding as colocalised.  
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